Caspase cleavage of iASPP potentiates its ability to inhibit p53 and NF-κB
نویسندگان
چکیده
An intriguing biological question relating to cell signaling is how the inflammatory mediator NF-kB and the tumour suppressor protein p53 can be induced by similar triggers, like DNA damage or infection, yet have seemingly opposing or sometimes cooperative biological functions. For example, the NF-κB subunit RelA/p65 has been shown to inhibit apoptosis, whereas p53 induces apoptosis. One potential explanation may be their co-regulation by common cellular factors: inhibitor of Apoptosis Stimulating p53 Protein (iASPP) is one such common regulator of both RelA/p65 and p53. Here we show that iASPP is a novel substrate of caspases in response to apoptotic stimuli. Caspase cleaves the N-terminal region of iASPP at SSLD294 resulting in a prominent 80kDa fragment of iASPP. This caspase cleavage site is conserved in various species from zebrafish to Homo sapiens. The 80kDa fragment of iASPP translocates from the cytoplasm to the nucleus via the RaDAR nuclear import pathway, independent of p53. The 80kDa iASPP fragment can bind and inhibit p53 or RelA/p65 more efficiently than full-length iASPP. Overall, these data reveal a potential novel regulation of p53 and RelA/p65 activities in response to apoptotic stimuli.
منابع مشابه
Betulinic Acid-Mediated Apoptosis in Human Prostate Cancer Cells Involves p53 and Nuclear Factor-Kappa B (NF-κB) Pathways
Defects in p53 and nuclear factor-kappa B (NF-κB) signaling pathways are frequently observed in the initiation and development of various human malignancies, including prostate cancer. Clinical studies demonstrate higher expression of NF-κB/p65/RelA, NF-κB/p50/RelB, and cRel as well as downregulation of the p53 network in primary prostate cancer specimens and in metastatic tumors. Betulinic aci...
متن کاملMG132 reverse the malignant characteristics of hypopharyngeal cancer.
In order to reverse the malignant characteristics of hypopharyngeal cancer, the proteasome inhibitor MG132 was introduced into FaDu/T cells and the mechanisms underlying its effects were investigated. The multi-drug resistance (MDR) sensitivities of FaDu/T and FaDu/T-MG132 cancer cells to several chemotherapeutics were investigated by a 3-[4,5-dimethylthiazol-2-yl]-2,5 diphenyltetrazolium bromi...
متن کاملPanduratin A, a possible inhibitor in metastasized A549 cells through inhibition of NF-kappa B translocation and chemoinvasion.
In the present study, we investigated the effects of panduratin A (PA), isolated from Boesenbergia rotunda, on apoptosis and chemoinvasion in A549 human non-small cell lung cancer cells. Activation of the executioner procaspase-3 by PA was found to be dose-dependent. Caspase-3 activity was significantly elevated at the 5 µg/mL level of PA treatment and progressed to a maximal level. However, no...
متن کاملNF-κB Regulates Caspase-4 Expression and Sensitizes Neuroblastoma Cells to Fas-Induced Apoptosis
Found in neurons and neuroblastoma cells, Fas-induced apoptosis and accompanied activation of NF-κB signaling were thought to be associated with neurodegenerative diseases. However, the detailed functions of NF-κB activation in Fas killing and the effect of NF-κB activation on its downstream events remain unclear. Here, we demonstrated that agonistic Fas antibody induces cell death in a dose-de...
متن کاملQuercetin potentiates apoptosis by inhibiting nuclear factor-kappaB signaling in H460 lung cancer cells.
The herbal flavonoid quercetin inhibits the growth of various cancer cells, but how it affects human cancer cells, particularly lung cancer cells, is unclear. We investigated the anticancer activity of quercetin and the underlying molecular mechanisms in non-small cell lung cancer (NSCLC) cells. Quercetin strongly inhibited cell proliferation, and increased sub-G1 and apoptotic cell populations...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 6 شماره
صفحات -
تاریخ انتشار 2015